ROBUST CONTROL WITH YOULA PARAMETRIZATION OF YEAST FED-BATCH CULTURES F. Renard^a, A. Vande Wouwer^a, S. Valentinotti^b, D. Dumur^c a. Service d'Automatique, Faculté Polytechnique de Mons, frederic.renard@fpms.ac.be; b. Firmenich SA, Switzerland Supélec c. Supélec, Département d'Automatique, Plateau de Moulon, 3 rue Joliot-Curie, F-91192 Gif sur Yvette cedex, France POLYTECH, MONS INTRODUCTION **Process description** Yeast has a limited respiratory capacity Fin : inlet flow rate control > Glucose oxidation Respiratory $k_5 \mathbf{O} + \mathbf{G} \xrightarrow{r_1} k_1 \mathbf{X} + k_7 \mathbf{P}$ Capacity > Glucose fermentation đ Ethano **G** $\xrightarrow{r_2}$ k_2 **X** + k_4 **E** + k_8 **P** 8 > Ethanol oxidation $k_6 \mathbf{O} + \mathbf{E} \xrightarrow{r_3} k_3 \mathbf{X} + k_0 \mathbf{P}$ Respirative Regime Maximal Biomass **Respiro-Fermentative** E : ethanol Productivity Regime - Ethanol is consumed -0 alucose - V.E constant -- Ethanol is produced concentration P measure Sub-optimal control strategy consists in controlling E at a low value. bioreactor MODELING YEAST FED-BATCH CULTURES Suggested linear model for control **Classical nonlinear model** Associated uncertainties 8(k) $\checkmark K_E$ variations according to the γ is the only $\lceil r_1 \cdot X \rceil$ $G_{\rm in}\cdot D$ Ġ G -1-1 0 0 operating regime. d is the alucose flux kinetic paramete Disturbance Ė $0 k_4 - 1$ $\cdot \mid r_2 \cdot X \mid -D \cdot \mid E \mid + \mid 0$ 0 K for cells growth $\gamma = \exp(\mu T_s)$ Model $-k_{5} = 0 - k_{6}$ $r_3 \cdot X$ 0 OTR 0 $1 - (\gamma)q$ v neglected glucose dynamics. ò k_9 k_8 k₂ 0 CTR \dot{P} exponential disturbance d(k)γ-variations due to μ- variations. $\checkmark D = F_{in}/V$: dilution rate; *E(k)* $_{E})q$ $F_{in}(k)$ $\checkmark G_{in} \\ \checkmark OTR$: glucose concentration in the feed medium: : oxygen transfer rate; $1-q^2$ K_E depends on the operating regime : $K_E = \frac{K_{EG}G_{in}T_s}{\Xi}$ ✓ CTR : carbon dioxide transfer rate; Proces Model $k_{EG} = \frac{k_s}{L}$ for respirative regime; $k_{EG} = k_4$ for respiro-fermentative regime $\sqrt{\mu} = \sum k r$: specific growth rate of biomass.

EXPERIMENTAL RESULTS AND CONCLUSION

FACULTÉ POLYTECHNIQUE DE MONS

Experimental results

✓ For the first 18h, the control algorithm is able to regulate *E* to the setpoint. The exponential $_{5}$ cells growth results in a exponential evolution for F_{in} .

 \checkmark After 18h, the specific growth rate μ decreases (substrate limitation). The adaptation dynamics being slower than the controller dynamics, a small drift is observed on *E* when μ is overestimated.

✓ The controller is able to deal with substrate limitation.

Conclusion

 \checkmark For control purpose, yeast fed-batch cultures can be modeled by a simple linear model describing the main macroscopic phenomenon.

 \checkmark The suggested modeling methodology allows several uncertainties to be associated with the simplified linear model.

 \checkmark An RST controller with Youla parametrization ensures the asymptotic rejection of unstable disturbance, a good robustness against modeling uncertainties and a noise attenuation in the control signal.

 \checkmark The control algorithm includes a disturbance model adaptation to deal with variations of the specific growth rate.

 \checkmark The suggested controller requires *very little knowledge about process* (only one yield coefficient and the on-line E-measurement).

*

ACADÉMIE UNIVERSITAIRE WALLONIE-BRUXELLES